Telegram Group & Telegram Channel
🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1840
Create:
Last Update:

🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1840

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Machine learning Interview from jp


Telegram Machine learning Interview
FROM USA